DNA-Seq Analysis

Introduction

This tutorial describes the DNA-Seq analysis workflow in Avadis NGS using an amplicon sequencing dataset. It assumes that Avadis NGS is installed and the steps listed in the 'Getting Started' tutorial have been completed.

Dataset

This is a paired-end amplicon sequencing data generated from 96 Yoruba HapMap samples. For the purpose of this tutorial, we will consider three samples from the same family (father, mother and child) out of the original 96. The dataset zip file (dnaseq-small-dataset-illumina.zip) contains the BAM files from these three samples. The reads were aligned against the hg19 assembly.

Goals

In this tutorial, we will check the quality of the amplicon resequencing visually and quantitatively, perform SNP detection and visualize the results, and priortize the list of identified SNPs for further analysis.

Sample Import

For this tutorial, we need to create a DNA Variant Analysis experiment with hg19 assembly and UCSC annotations. Choose "Illumina" as the sequencing platform and "Paired End" as the library layout.

New DNA Variant Analysis Ex	hew DNA Variant Analysis Experiment (Step 1 of 2)								
Choose Meta Data									
Select the appropriate organis	m, build, sequencing platform and library layout.								
Organism	Human								
Build	hg19 👻								
Gene Annotation	UCSC Genes (2012.03.10)								
Sequencing Platform	Illumina 🗸								
Library layout	Paired End								
Help	<< Back Next >> Finish Cancel								

Figure 1: DNA-Seq experiment creation

While loading the BAM files present in the zipped file dnaseq-small-datasetillumina.zip (using the 1st icon from the left), we have an option of renaming the samples to make them easily distinguishable.

	Choose Data									
	You can choose aligned read data files, previously created samples or both to use in this experiment. Once a data file has been imported and used as a sample, it will be available for use in any future experiment.									
	NOTE: All reads from the files with the same sample name will be combined into a single sample for analysis. Make sure to edit the default sample names shown below, if necessary.									
	1	Seq 🔍 🗾 🗡								
	Туре	Selected files/samples	Sample Name							
		NA18501_S27.bam	Father							
		NA 18502_S1.bam	Mother							
		NA18500_S38.bam	Child							
1										
		ielp << Back N	ext >> Finish Cancel							

Figure 2: Renaming samples

Once the samples get loaded, the genome browser is launched showing the chr1 of each sample. The fact that similar peaks are present in each sample reflects the fact that this is indeed amplicon data.

Figure 3: Genome browser tracks on initial launch

Quality Control

Since we are planning on running SNP analysis, the quality control metrics need to be carefully considered using the quality inspection in the workflow navigator (using the Quality Inspection section in the workflow browser).

Pre-Alignment QC Plots

Using these plots, we can discover the base quality by its position in the read, the approximate GC% of the amplicon regions, and the average quality of reads and bases in each sample.

Figure 4: Pre-Alignment QC plots

We can also take a look at QC plots specific to Illumina data (using Quality Inspection \rightarrow Base Quality by Tile workflow step). The plot shows average base qualities rendererd as a heatmap with user controls for choosing the sample and lane of interest. Rows in the heatmap correspond to tiles of the lane under consideration, while columns represent flow cycles. Each cell is colored according to the average quality of all the bases that fall in the specific cycle of the specific tile.

The below figure shows the Base Quality QC plot for this dataset in which the qualities are good in the earlier flow cycles and degrade marginally towards the end.

Figure 5: Base quality by tile

Post Alignment QC

A paired end library of a normal sample (i.e. not a cancer sample) is considered good quality if the majority of pairs align in the expected orientation and distance from each other. We can check the 'Match status' pie-charts (using the Quality Inspection \rightarrow Alignment QC Plots workflow step), to verify if the paired end libraries are good.

Figure 6: Match status of paired end reads

Targeted Region QC

One of the most important QC steps in amplicon analysis is to determine the efficacy of targeted resequencing. For this, we need to import the file containing information about the target region first (using the Utilities \rightarrow Import Region List workflow step). The Region list is a simple list of chromosome, start, end, strand and other annotation information, such as zygocity, score, type etc. For this tutorial, use the Target-Regions.tsv file provided with the dataset. (Note that currently, this is obtained by extracting the information from the [Targets] section of the Manifest file present in the MiSeq folder). After giving the file location in the first step, we can proceed with the defaults till step 4 and then mark the mandatory columns as shown below.

	h File Import (Step 4 of 4)									
	Column Options Select the default columns and change the types of the optional columns of Region List.									
	Se	lect mandat	ory columns of Region Li	st						
1		Ch	nromosome Column Ch	romosome	•					
			Start Column St	art Position	▼]					
	End Column End Position									
	V	#	Column Name	Data Type	Attribute Type					
	V	0	TargetA	string	Categorical					
	V	1	TargetB	string	Categorical					
	V	2	Target Number	integer	Continuous					
	V	3	Species	string	Categorical					
١	V	4	Build ID	string	Categorical					
	V	5	Probe Strand	string	Categorical					
	V	6	Sequence	string	Categorical					
1		-								
		Help	< Ba	ck Next >> F	inish Cancel					

Figure 7: Column selection

After the region list gets imported, we can use this as input for the Quality Inspection \rightarrow Targeted Region QC workflow step and run this step with default parameters.

Targeted QC		X
This QC step annotates a region lis the selected read list. Padding can	t with read counts and averag be added to the ends of each	e coverage for samples in region.
Choose Read List	All Aligned Reads	Choose
Choose Region List	Targets_DNA_Seq	Choose
Padding	0	
Help		OK Cancel

Figure 8: Target region QC

For this tutorial dataset, the coverage across the target regions is very high with all three samples having coverage of above 75%. This can be determined by going through the 'Notes' section in the inspector of the output of this analysis step.

	🖫 Reg	ionListNode I	Inspector														x		
		h	arg	ete	d Q	2C \	vitł	Targets_DNA_Se	eq										
		Organism								Homo sapiens									
1	Notes								Statistics for sample NA18500_S38										
							0	% o % o	f re f re	ead ead	s w s w	ithi ithi	n regions: 79.73 n 100bp: 79.73				Ŧ		
			Crea	tion	dat	te	F	ri Jı	ul 1	3 1	9:4	6:2	1 IST 2012						
			Last mod	ified	dat	te	F	ri Jı	ul 1	31	9:4	6:2	1 IST 2012						
				0	wne	er	g	xus	er										
			Number o	fRei	nior	าร	3	63											
1	Regions	Histogram	Summary Stat	istics]		-												
1	Chr	Start	End	T	, 								Avg Cov	Ava Cov		Ava Cov			
	chr1	11293795	11294006	<	-	1	_	-	-	-	-	_	79 49056	86 45283		67 87264			
	chr1	19947100	10047205	e		1			-				178 7551	146 2398	2	110 6173	6		
	chr1	21324779	21324997	s		1			_				56 72146	55 59818	2	68 50685	1		
	chr1	28084416	28084623	5		1			-				5 346154	2 980769		6 5 4 3 2 6 9			
	chr1	31987518	31987725	5		1			-				6.009615	9.605769		9 567307			
	chr1	34486049	34486289	s		1			_				10 70954	6 128631		20 43568			
	chr1	34620622	34620809	5		1			-				189 1011	128 0426	5	116 9149			
	chr1	37796449	37796646	s		1			_				49.63636	32 26768	2	58 31313			
	chr1	44727829	44728042	5		1			-				32.33645	38.09346	5	68.07009			
	chr1	49254245	49254474	5		1			-				25.13478	28.88261		29.94783			
	chr1	58049954	58050179	s		1			-				105.9779	74,30531		139.8761			
	chr1	91951953	91952160	s		1			-				66.23077	89.86539		150.1442			
	chr1	96058388	96058598	s		1			-				102,4028	76.66351		119.3981	1		
	chr1	99458823	99459029	s		1			-				132.2126	78.48309		111.0048			
I	chr1	108061	108061	s		1			-				225.6842	181.1632	2	159.9158			
	chr1	115862	115862	s		1			-				63.00000	74.84849		82.32829	1		
	chr1 153642 153642s 1												124.8615	107.8615	;	99.00513	1		
	chr1	167760	167760	s		1			-				74.59426	92.73770)	63.50820	1		
	chr1	170216	170216	s		1			-				100 8538	63 03302		130 0566	-		
	Help OK Cancel																		

Another important QC step is to determine if there are any regions with uniformly low coverage across all the samples. To do this visually, we can perform clustering on both samples and regions based on the average coverage (using Utilites \rightarrow Cluster Regions workflow step). This would give us the below image wherein we can see certain regions having uniform low coverage (blue) across the samples.

Figure 9: Cluster on target region QC list

Filter

Before proceeding with SNP Detection, we can filter out some of the low quality reads (using Filter \rightarrow Filter by Read Metrics workflow step) with criteria as shown below. This would leave us with a total of 156,512 reads from the original total of 229,262 reads.

Here and Metrics (Step 2 of 2)								
Choose filters Choose filters to apply on the Read List								
Filters								
Remove non-primary multiply mapped reads								
Remove reads with more than 1 matches								
Remove reads with average base quality below 30								
▼ Remove reads with number of 'N's above 0								
Remove reads with alignment score below 95								
Remove reads with mapping quality below 40								
Remove reads failing vendor's QC								
Remove mates of filtered reads								
Help << Back Next >> Finish Cancel								

Figure 10: Filter criteria

SNP Detection

After QC and filtering, we are ready to proceed with the variant analysis. We can run SNP Detection on the filtered read list using the Analysis \rightarrow SNP Detection workflow step. We can choose a dbSNP annotation database. This needs to be downloaded from the 'Annotations Manager'. Please note that this takes a significant amount of time so we can choose the option as 'None' if we want to skip that part.

SNP Detection (Step 2 of 2)							
Select Inputs Select SNP detection parameters.							
SNP Detection Parameters							
Confidence score (-10*log10(p-value)) 50							
Filters							
☑ Ignore reference locations with coverage below 10							
☑ Ignore reference locations with variants below 2							
Ignore reference locations with homopolymer stretch greater than							
Ignore spill overs at locations adjacent to homopolymer stretch greater than							
Help << Back Next >> Finish Cancel							

Figure 11: SNP Detection Parameters

r	🗣 SNPResultNode	e Inspector			X						
		Name	BNPs w	ith confidence score	cutoff 50						
		Notes	Base Quality Cut Off: 5 Use mapping quality if less than base quality : true Ignore reference locations with coverage below : 10								
	Cre	ation date	Fri Jul :	13 23:35:33 IST 201	2						
	Last mo	dified date	Fri Jul :	13 23:35:33 IST 201	2						
		Owner	gxuser								
		Organism	Homo sapiens								
	No c	ofSamples	3								
	Summary Statistics										
	Variant Type	NA18500)_S38	NA18501_\$27	NA18502_S1						
	Deletion		16	14	18						
	Insertion		5	5	3						
	Substitution		225	216	231						
	Complex		4	5	3						
	Help				OK Cancel						

Figure 12: SNP results

The SNP results are divided into single-base variant lists and multi-base variant lists. The SNPs of each sample are listed independently. In addition a multi-sample report is created which is the union of all variants found across all the samples. We can double-click and open each of these outputs to get an idea of their contents.

Figure 13: Experiment navigator after SNP calling

The multi-sample report has one variant allele per row. For each variant allele it has six sample specific columns:

- total reads
- % reads supporting variant allele
- % reads which are different from the reference
- Strand bias
- SNP call at this location (could be ref)
- Score of the SNP call (empty if no SNP)

Since we have 3 samples, we will have 3x6 plus the additional allele specific columns in the multisample report. The next step would be to narrow down this list of SNPs to the most interesting ones according to the use case.

Find Significant SNPs

In this step, we need to specify the multiple sample report and an interpretation depending on the experimental setup. The below figure shows the various experimental setups that are supported in this analysis step.

Select Inputs Select multi sample report, experimental setup and the corresponding interpretation. Only the samples from the doesn interpretation are considered for the analysis. Setup 1: This accepts any interpretation should have two parameters (Group and Type) with Type being Normal for at least one sample in each Group. Setup 3: Interpretation should have exactly one parameter with one condition being Normal Multi Sample Report Multi Sample Report Choose Experimental setup	Find Significant SNPs (Step 1 of 3)								
Seter null sample report, experimental setup and the corresponding interpretation. Only the samples from the doesn interpretation are considered for the analysis. Setup 1: This accepts any interpretation. Normal for at least one sample in each (roup. Setup 3: Interpretation should have exactly one parameter. Setup 4: Interpretation should have exactly one parameter with one condition being Normal Multi Sample Report Multi Sample Report Choose Experimental setup	Select Inputs								
Multi Sample Report Choose Experimental setup	Select multi sample report, experimental setup and the corresponding interpretation. Only the samples from the chosen interpretation are considered for the analysis. Setup 1: This accepts any interpretation. Setup 2: Interpretation should have two parameters (Group and Type) with Type being Normal for at least one sample in each Group. Setup 3: Interpretation should have exactly one parameter. Setup 4: Interpretation beind have exactly one parameter with one condition being Normal								
Experimental setup	Multi Sample Report Multi Sample Report Choose								
 Orp 1 Grp 2 Grp 3 Grp 4 Orp 1 Group 2 Group 3 Orp 1 Group 4 Orp 2 Group 3 Orp 3 Group 4 Orp 3 Group 4 Orp 3 Group 4 Orp 4<!--</td--><td>Experimental setup</td>	Experimental setup								
001 0 m 2 0m 3 0m 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<									
Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 Interpretation All Samples Choose Help <<< Back Next>> Finish Cancel	Grip 1 Grip 2 Grip 3 Grip 4 Grip 2 Grip 2 Grip 3 Grip 4 Grip 2 Grip 2 Grip 2 Grip 3 Grip 4 = Test = Test = Hormal								
Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 Normal Interpretation All Samples Choose Help <<< Back Next>> Finish Cancel	Group 1 Group 2 Group 3								
Interpretation All Samples Choose Help <<< Back Next >> Finish Cancel	Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 Mormal								
Help Kext >> Finish Cancel	Interpretation All Samples Choose								
	Help Next >> Finish Cancel								

On selecting the first setup, 119 of the 346 alleles listed in the multi-sample report are present in 3 out of 3 samples with reasonable number of supporting reads (35%). The number of supporting samples can be changed using the slider.

Figure 15: Visualization of results

Visualization of Results

To quickly browse through the 119 alleles that were saved, we can right-click on output in the experiment navigator and select the option to navigate in the Genome Browser. The Navigate Spreadsheet tab in the Genome Browser will show the contents of the region list.

Spreadsheet ((205 rows)									Р
Chromosome	Start	End	Reference	Variant Allele	Variant Type	Sample Co	Supporting	Allele Freq	Variant Re	
chr 1	11293959	11293959	с	т	Substitution	3	51.5625	0.6666667	51.5625	
chr 1	19947256	19947256	т	С	Substitution	2	53.78788	0.33333334	53.78788	
chr 1	91952120	91952120	С	т	Substitution	3	96.296295	0.8333333	100.0	-
chr 1	96058550	96058550	G	A	Substitution	2	0.0	0.33333334	0.0	-
chr 1	108061647	108061647	С	т	Substitution	2	47.058823	0.5	47.058823	-
chr 1	115862254	115862254	A	С	Substitution	3	100.0	1.0	100.0	-
chr 1	153642823	153642823	Α	G	Substitution	2	48.0226	0.33333334	48.0226	Ŧ
•									F	
Find:		Sind Next	Find Previo	ous						

Figure 16: Navigating the region list in the Genome Brower

When we double click on a specific region as shown in the below image, the view zooms to that location. We can also look for a particular region of interest using the search functionality. Alternatively we can also scan through the browser looking for interesting SNPs. In the below figure, for this particular variant, the parents are heterozygous whereas the child is homozygous indicating a loss of heterozygosity.

Figure 17: GB view of the SNP

From the mismatch histogram alone it might be hard to glean information about the alleles present at this location. For this, we can right-click on the genome browser track at the location of interest and launch the variant support view. It confirms that in the present case it is a homozygous variant in the off-spring.

🔩 Variant Su	ррс	ort V	iew	- N	A18	500	_\$3	B (cł	hr2:	4901	1365	55)											X
Cluster Id	т	т	с	т	G	с	с	А	т	т	т	Α	G	т	с	Α	с	С	т	G	с	Size	
Cluster-75											С												75
:307:FCA01											С	1		\mathbf{x}_{i}		С							1
:307:FCA01					\mathbf{x}_{i}		\mathbf{x}_{i}	λ.		С	С	\mathbf{x}_{i}		\mathbf{x}_{i}	\mathbf{x}_{i}	\mathbf{x}_{i}	\mathbf{x}_{i}		\mathbf{x}_{i}				1
:307:FCA01					\mathbf{x}_{i}		Т			\mathbf{x}_{i}	С	\mathbf{x}_{i}		\mathbf{x}_{i}	\mathbf{x}_{i}	\mathbf{x}_{i}	\mathbf{x}_{i}						1
:307:FCA01					\mathbf{x}_{i}		\mathbf{x}_{i}	κ.	С	\mathbf{x}_{i}	С	\mathbf{x}_{i}		\mathbf{x}_{i}	\mathbf{x}_{i}	\mathbf{x}_{i}	\mathbf{x}_{i}						1
Coverage:	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79	79		
Minimum duster size 1 V Show coverage row V Show gaps																							
Help																						Clo	ose

Figure 18: Variant Support View

SNP Effect Analysis

We can see the effect of these 119 alleles by using the SNP effect analysis. Please select all the effects and run the analysis. This would output a region list as well as a gene list. In the present case, we would see the presence of a SNP in an exonic region and the resultant affected gene(MPZL1) in the gene list . This functionality is similar to the Ensembl SNP Effect predictor tool.

ရာ Input parameter	x								
Select SNP Report / SNP Region List for effect prediction									
SNP Report Signific	cant SNPs Re Choose								
Choose effects to output									
Protein effects	Non Protein effects								
START_LOST	SYNONYMOUS_CODING								
STOP_GAINED	V INTRONIC								
STOP_LOST	SPRIME_UTR								
FRAMESHIFT_CODING	SPRIME_UTR								
NON_SYNONYMOUS_C	UPSTREAM								
SPLICE_SITE	DOWNSTREAM								
ESSENTIAL_SPLICE_SITE	INTERGENIC								
V EXONIC	VEAR_GENE								
GENIC									
COMPLEX_VARIATION									
Help	OK Cancel								

Figure 19: SNP effect analysis

If you have access to the whole dataset containing the MiSeq run folder for all the 96 samples, you can load that in and repeat this analysis with the larger dataset.

This concludes our DNA-Seq tutorial. This is a very brief overview of the DNA-Seq experiment workflow in Avadis NGS. For more details or clarifications, please revert back (<u>sales@avadisngs.com</u>) or <u>support@avadisngs.com</u>) and we will address your queries.

